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Abstract

We utilize a deep learning architecture to learn model fit-
ting problems in computer vision. Robust optimization by
extending the classic RANSAC algorithm. We learn search
strategies from data. Based on the previously detected model,
a neural network is applied to guide the RANSAC estima-
tor to different subsets of all measurements, in order to find
model instances. Applications include finding multiple van-
ishing points in artificial scenes, fitting planes to building im-
ages, or estimating multiple rigid motions within the same
sequence.

Introduction
Humans primarily perceive the external world through hear-
ing and vision, with over 80% of information obtained
through vision. With the development of science and so-
cial progress, computers have become an indispensable tool
in human daily life and work. In order to endow comput-
ers with the perceptual function of human vision and enable
them to process visual information, an emerging discipline
- computer vision has received widespread attention. In the
past few decades, a large number of computer vision based
products have also emerged in our daily lives. For example,
automatic recognition of license plates,Face detection and
beautification with digital cameras, autonomous driving of
cars, panoramic image synthesis, and more.

How to enable computers to extract effective information
from images is crucial for computer vision. In most cases,
this effective information can be represented through param-
eter models (Wong 2013; Pham 2014).Model fitting refers
to estimating appropriate model parameters from a set of
observation data, which can be used to estimate parame-
ter models. It can be seen that model fitting plays an im-
portant role in computer vision. The current model fitting
methods can be used in many computer vision applications.
For example, 3D reconstruction(Se and Jasiobedzki 2006;
Izadi et al. 2011), image stitching(Gao, Kim, and Brown
2011; Zaragoza et al. 2013), motion segmentation(Crocco,
Rubino, and Del Bue 2016; Schonberger and Frahm 2016),
object recognition(Yan et al. 2015; Kong et al. 2016) , and
so on. With the development and intersection of research
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Figure 1: Multi-Hypothesis Generation: a neural network
predicts sampling weights p for all observations conditioned
on a state s. A RANSAC-like sampling process uses these
weights to select a model hypothesis and appends it to the
current multi-instance hypothesis M. The state s is updated
based on M and fed into the neural network repeatedly.

fields such as machine learning, image processing, and ro-
bust statistics, model fitting(Farina et al. 2023; Churchill
et al. 2023) has made significant progress.

Model fitting has a long history of development in the
field of statistics. With the development of interdisciplinary
fields, model fitting also involves various theories and tech-
nologies such as image processing, machine learning, and
artificial intelligence. Model fitting is a fundamental disci-
pline in the field of computer vision, providing reliable re-
search basis for other tasks in this field. Currently, many
universities and research institutions both domestically and
internationally are paying increasing attention to computa-
tional vision, and model fitting is also playing an increas-
ingly important role.

In recent decades, many experts and scholars at home and
abroad have conducted in-depth research on model fitting
theory and methods, and proposed many fitting algorithms.
However, the existing fitting algorithms are far from meeting
the needs of practical engineering. Currently, the main diffi-



culties faced by model fitting algorithms include sensitivity
to imbalanced data and interference from high outliers.

Despite its simplicity and robustness to outliers, Ran-
dom Sample Consensus (RANSAC)(Fischler and Bolles
1981) remains an important method for robust optimization
and an important component of many state-of-the-art visual
stimuli(Mur-Artal and Tardós 2017; Brachmann and Rother
2018). RANSAC allows for accurate estimation of model
parameters from a set of observations, some of which are
outliers. For this purpose, RANSAC iteratively selects the
random subset Ns of observations, known as the minimum
set, to create model assumptions. Assumptions are sorted
based on their consistency with all observations, and the
highest ranked assumption is returned as the final estimate.

Modern, state-of-the-art methods solve multi-model fit-
ting simultaneously instead, by using clustering or optimi-
sation techniques to assign data points to models or an out-
lier class(Barath and Matas 2018b, 2019) . In our work, we
revisit the idea of sequential processing, but combine it with
recent advances in Deep Learning robust estimators(Yi et al.
2018; Brachmann and Rother 2019). Sequential processing
easily lends itself to conditional sampling approaches, and
with this we are able to achieve state-of-the-art results de-
spite supposedly being conceptually inferior to simultaneous
approaches.

The main inspiration of our work stems from the work
of Brachmann and Rother(Brachmann and Rother 2019) ,
where they train a neural network-PointNet to enhance the
sample efficiency of a RANSAC estimator for single model
estimation. In contrast, we investigate multi-model fitting
by letting the neural network update sampling weights con-
ditioned on models it has already found. This allows the
neural network to not only suppress outliers, but also in-
liers of all but the current model of interest. Since our
new RANSAC variant samples model hypotheses based on
conditional probabilities, we name it PointNet Conditional
Sample Consensus or PCSAC proves to be powerful and
achieves top performance for several applications.

To summarise, our main contributions are as follows:

• A robust multi model fitting method based on deep learn-
ing. It is based on a neural network that sequentially up-
dates the conditional sampling probability of the hypoth-
esis selection process.

• Choosing the inlier count itself as training objective fa-
cilitates self-supervised learning of our work.

• We have achieved vanishing point estimation and multi
model homogeneous estimation, which exceeds compet-
itive robust estimation.

Related work
Robust model fitting is a key problem in Computer Vision,
which has been studied extensively in the past. RANSAC is
arguably the most commonly implemented approach.While
effective in the single instance case, RANSAC cannot es-
timate multiple model instances apparent in the data. Se-
quential RANSAC(Vincent and Laganiére 2001) fits mul-
tiple models sequentially by applying RANSAC, removing

inliers of the selected hypothesis, and repeating until a stop-
ping criterion is reached.Another group of methods utilises
preference analysis(Zhang and Kǒsecká 2005) which as-
sumes that observations explainable by the same model
instance have similar distributions of residuals(Magri and
Fusiello 2016, 2019) . In order to better deal with intersect-
ing models, RansaCov(Magri and Fusiello 2016) formulates
multi-model fitting as a set coverage problem.Several works
propose improved sampling schemes to increase the like-
lihood of generating accurate model hypotheses from all-
inlier minimal sets(Torr, Nasuto, and Bishop 2002; Barath
and Matas 2018a) in the single-instance case.

Deep learning has been applied in the past to fit single
parameter models by directly predicting model parameters
from images(Kendall, Grimes, and Cipolla 2015; DeTone,
Malisiewicz, and Rabinovich 2016), replacing robust es-
timators(Sun et al. 2020) or enhancing robust estimators.
Later, deep learning model fitting methods were often in-
spired by point cloud registration, constructing a model
framework that directly takes the point cloud as input and
outputs the entire input class label or each point segment/-
part label of each input point. Yi et al. trained a neural net-
work to classify a set of sparse correspondences between
internal and external values. Their network is inspired by
PointNet(Qi et al. 2017) and independently processes each
corresponding relationship through a series of multi-layer
perceptrons (MLPs). Normalize injection of global con-
text through the use of instances and batch processing be-
tween layers(Ulyanov, Vedaldi, and Lempitsky 2016) . The
NGRANSAC network predicts weights to guide RANSAC
sampling, rather than using internal class labels, using the
angle error between the estimated relative attitude and the
actual ground attitude as task loss. Notably, Brachmann and
Rother(Brachmann and Rother 2019) train a neural network
to enhance the sample efficiency of RANSAC by assigning
sampling weights to each data point, effectively suppressing
outliers. Few works, such as the conditional sampling based
on residual sorting by Chin et al.(Chin, Yu, and Suter 2011)
, or the guided hyperedge sampling of Purkait et al.(Purkait
et al. 2016) , consider the case of multiple instances. In con-
trast to these handcafted methods, we present the PointNet-
based conditional sampling approach.

Method

Given a set of noisy observations y contaminated by outliers,
we seek to fit M instances of a geometric model h apparent
in the data. We denote the set of all model instances as M.
PCSAC estimates M via three nested loops.First, We gener-
ate a single model instance h via RANSACbased sampling,
guided by a neural network. Second, We repeat single model
instance generation while conditionally updating sampling
weights. Multiple single model hypotheses compound to a
multi-hypothesis M. Third, We repeat steps 1 and 2 to sam-
ple multiple multi-hypotheses M independently. We choose
the best multi-hypothesis as the final multi-model estimate
M.We discuss these conceptional levels more formally be-
low.



Single model sampling
We estimate parameters of a single model, e.g. one VP, from
a minimal set of C observations, e.g. two line segments, us-
ing a minimal solver fs. As in RANSAC, we compute a hy-
pothesis pool H via random sampling of S minimal sets. We
choose the best hypothesis h based on a single instance scor-
ing function gs. Typically, gs is realised as inlier counting
via a residual function r(y, h) and a threshold t.

Generate Multiple Model Assumptions
We repeat single model instance sampling M times to gen-
erate a full multi-hypothesis M, e.g. a complete set of van-
ishing points for an image. Particularly, we select M model
instances hm from their respective hypothesis pools Hm.
Applied sequentially, previously chosen hypotheses can be
factored into the scoring function gs when selecting hm:

hm = arg max
h∈Hm

gs(h, y, hm − 1) (1)

Sampling Multiple Model Assumption
We repeat the previous process P times to generate a pool
of multi-hypotheses P. We select the best multi-hypothesis
according to a multi-instance scoring function gm:

M = arg max
M∈P

gm(m, y) (2)

where gm measures the joint inlier count of all hypotheses
in M, and where the m in gm stands for multi-instance.

Conditional Sampling
RANSAC samples minimal sets uniformly from Y. For large
amounts of outliers in Y, the number of samples S required
to sample an outlier-free minimal set with reasonable prob-
ability grows exponentially large. RANSAC instead sam-
ple observations according to a categorical distribution y ∼
p(y ; w) parametrised by a neural network w. The neural
network biases sampling towards outlier-free minimal sets
which generate accurate hypotheses h. While this approach
is effective in the presence of outliers, it is not suitable for
dealing with pseudooutliers posed by multiple model in-
stances. Sequential RANSAC conditions the sampling on
previously selected hypotheses, i.e. y ∼ p(y ; h1..., hm−1),
by removing observations already deemed as inliers from Y
after each hypothesis selection. While being able to reduce
pseudo-outliers for subsequent instances, this approach can
neither deal with pseudo-outliers in the first sampling step,
nor with gross outliers in general. Instead, we parametrise
the conditional distribution by a neural network w condi-
tioned on a state s: y ∼p(y ; s ; w).

The state vector sm at instance sampling step m en-
codes information about previously sampled hypotheses in a
meaningful way. We use the inlier scores of all observations
w.r.t. all previously selected hypotheses as the state sm. We
define the state entry sm,iof observation yi as:

sm, i = max
j∈[1,m)

gy(yi, hj) (3)

with gy gauging if y is an inlier of model h. We sample multi-
instance hypothesis pools independently:

p(P ;w) =

n∏
i=0

p(M,w), (4)

while conditioning multi-hypotheses on the state s:

p(M ;w) =

M∏
m=1

p(H; sm;w), (5)

with

p(H; s;w) =

S∏
s=1

p(h; s;w), (6)

with

p(H; s;w) =

C∏
c=1

p(y; s;w). (7)

Note that we do not update state s while sampling single
instance hypotheses pools H, but only within sampling of
multi-hypotheses M. We provide details of scoring functions
gy , gm and gs in the appendix.

Optimize network
Neural network parameters w shall be optimised in or-
der to increase chances of sampling outlier- and pseudo-
outlierfree minimal sets which result in accurate, complete
and duplicate-free multi-instance estimates M. we minimise
the expectation of a task loss L(M) which measures the qual-
ity of an estimate:

L(w) = E(P ;w)[L(M)], (8)

In order to update the network parameters w, we approxi-
mate the gradients of the expected task loss:

∂L(w)
∂w

= E(P )[L(M)
∂ log p(P ;w)

∂w
], (9)

by drawing K samples Pk ∼ p(M; w):

∂L(w)
∂w

≈ 1

K

K∑
k=1

[L(Mk)
∂ log p(Pk;w)

∂w
]. (10)

As we can infer from Eq. 9, neither the loss L, nor the sam-
pling procedure for ˆM need be differentiable. we subtract
the mean loss from L to reduce variance.

Supervised Training
If ground truth models Mgt = hgt

1 ,...,hgt
G are available, we

can utilise a task-specific loss Ls(h, hgt measuring the er-
ror between a single ground truth model m and an estimate
h. For example, Ls may measure the angle between an es-
timated and a true vanishing direction. First, however, we
need to find an assigment between Mgt and M. We com-
pute a cost matrix C, with Cij = Ls(hi, h

gt
j , and define

the multi-instance loss as the minimal cost of an assign-
ment obtained via the Hungarian method fH :(L(M, Mgt=
fH (C1:min(M,G)). Note that we only consider at most G
model estimates h which have been selected first, regardless
of how many estimates M were generated, i.e. this loss en-
courages early selection of good model hypotheses, but does
not penalise bad hypotheses later on.



Self-supervised Training
In absence of ground-truth labels, we can train PCNSAC in
a self-supervised fashion by replacing the task loss with an-
other quality measure. We aim to maximise the average joint
inlier counts of the selected model hypotheses:

gci(hm, y) =
1

|y|

|y|∑
i=1

max
j∈[1,m)

gi(yi, hj). (11)

We then define our self-supervised loss as:

Lself (M) = − 1

M

M∑
m=1

gci(hm, y). (12)

Eq. 11 monotonically increases w.r.t. m, and has its mini-
mum when the models in M induce the largest possible min-
imally overlapping inlier sets descending in size.

Instance Selection
In some scenarios, the number of instances M needs to
be determined as well but is not known beforehand, e.g.
for uniquely assigning observations to model instances. For
such cases, we consider the subset of instances M1:q up to
the q-th model instance hq which increases the joint inlier
count by at least Θ. Note that the inlier threshold Θ for cal-
culating the joint inlier count at this point may be chosen
differently from the inlier threshold t during hypothesis sam-
pling. For example, in our experiments for homography es-
timation, we use a Θ> t in order to strike a balance between
under- and oversegmentation.

Experiments
For conditional sampling weight prediction, we implement
a neural network based on PointNet. We provide implemen-
tation and training details, as well as more detailed experi-
mental results, in the appendix.

Line Fitting
We apply PCSAC to the task of fitting multiple lines to a
set of noisy points with outliers. For training, we gener-
ated a synthetic dataset: each scene consists of randomly
placed lines with points uniformly sampled along them and
perturbed by Gaussian noise, and uniformly sampled out-
liers. After training PCSAC on this dataset in a supervised
fashion, we applied it to the synthetic dataset. Fig. 2 shows
how PCSAC sequentially focuses on different parts of the
scene, depending on which model hypotheses have already
been chosen, in order to increase the likelihood of sampling
outlier-free non-redundant hypotheses. Notably, the network
learns to focus on junctions rather than individual lines for
selecting the first instances. The RANSAC-based single-
instance hypothesis sampling makes sure that PCSAC still
selects an individual line.

Two-view Plane Segmentation
Given feature point correspondences from two images show-
ing different views of the same scene, we estimate multi-
ple homographies H conforming to different 3D planes in

Figure 2: Line fitting result for the star5 scene.We show the
generation of the multi-hypothesis M eventually selected by
PCSAC.Top: Original points with estimated line instances
at each instance selection step. Middle: Sampling weights
at each instance step. Bottom: State s generated from the
selected model instances.

Figure 3: Homography fitting result for the AdelaideRMF
unihouse scene. Top: Left and right image, feature points
with ground truth labels, and feature points with labels pre-
dicted by PCSAC-S. Middle: Sampling weights of feature
points at each instance step. Bottom:State s generated from
the selected model instances.

the scene. As no sufficiently large labelled datasets exist for
this task, we train our approach self-supervised (PCSAC-
S) using SIFT feature correspondences extracted from the
structure-from-motion scenes. Evaluation is performed on
the AdelaideRMF homography estimation dataset and ad-
heres to the protocol, i.e. we report the average misclassifica-
tion error (ME) and its standard deviation over all scenes for
five runs using identical parameters. We compare against the
robust estimators Progressive-X, Multi-X, PEARL, MCT,
RPA, T-Linkage, RansaCov and Sequeantial RANSAC.

Vanishing Point Estimation
A vanishing point v ∝ Kd arises as the projection of a di-
rection vector d in 3D onto an image plane using camera
parameters K. Parallel lines, i.e. with the same direction
d, hence converge in v after projection. If v is known, the
corresponding direction d can be inferred via inversion: d
∝ K−1v. Fig. 4 shows VPs therefore provide information
about the 3D structure of a scene from a single image. While
two corresponding lines are sufficient to estimate a VP, re-



Figure 4: VP fitting result for a scene from the NYU-VP
test set.Top: Original image, extracted line segments, assign-
ment to ground truth VPs, and assignment to VPs predicted
by PCSAC.Middle: Sampling weights of line segments at
each instance step.Bottom: State s generated from the se-
lected model instances.

alworld scenes generally contain multiple VP instances. We
apply PCSAC to the task of VP detection and evaluate it on
NYU-VP and YUD+ datasets, as well as on YUD. We com-
pare against several other robust estimators, and also against
task-specific state-of-the art VP detectors. We train PCSAC
on the training set of NYU-VP in a supervised fashion and
evaluate on the test sets of NYU-VP, YUD+ and YUD using
the same parameters. YUD and YUD+ were neither used
for training nor parameter tuning. Notably, NYU-VP only
depicts indoor scenes, while YUD also contains outdoor
scenes.

Results
We recomputed results for MCT using the code provided
by the authors. For Sequential RANSAC, we used our own
implementation. Other results were carried over. PCSAC-
S outperforms state-of-the-art Progressive-X, yielding a
significantly lower average ME with a marginally higher
standard deviation. Notably, Sequential RANSAC performs
favourably on this task as well. Fig. 3 shows a qualitative
result for PCSAC-S.

Ablation Study
We perform ablation experiments in order to highlight the
effectiveness of several methodological choices. PCSAC
with EM refinement consistently performs best on both van-
ishing point and homography estimation. If we disable EM
refinement, accuracy drops measurably, yet remains on par
with state-of-the-art. On NYU-VP we can observe that the
self-supervised trained PCSAC-S achieves state-of-the-art
performance, but is still surpassed by PCSAC trained in a
supervised fashion. Training PCSAC-S without inlier mask-
ing regularisation reduces accuracy measurably, while train-
ing only with IMR and disabling the self-supervised loss
produces poor results. Switching to unconditional sampling
for PCSAC (NYU-VP) or PCSAC-S (AdelaideRMF) comes
with a significant drop in performance, and is akin to incor-
porating vanilla NG-RANSAC into Sequential RANSAC.

Conclusion
We have presented PCSAC, the learning-based robust esti-
mator for detecting multiple parametric models in the pres-
ence of noise and outliers. A neural network learns to guide
model hypothesis selection to different subsets of the data,
finding model instances sequentially. We have applied PC-
SAC to multi-homography estimation, achieving state-of-
the-art accuracy for both tasks.
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